

Location-Based Services Design and
Implementation Using Android Platforms

Wen-Chen Hu

Department of Computer Science
University of North Dakota

Grand Forks, ND 58202
wenchen@cs.und.edu

 Naima Kaabouch
Department of Electrical

Engineering
University of North Dakota

Grand Forks, ND 58202
naimakaabouch@mail.und.edu

Hung-Jen Yang

Department of Industrial
Technology Education

National Kaohsiung Normal
University

Kaohsiung City, Taiwan
hjyang@nknucc.nknu.edu.tw

Ather Sharif
Department of Computer Science

University of North Dakota
Grand Forks, ND 58202
ather.sharif@gmail.com

Abstract

Mobile computing research evolves constantly and quickly. New mobile devices,
technologies, methods, or applications are introduced every day. One of the mobile
applications, location-based service (LBS), has attracted great attention recently. A
location-based service is a service based on the geographical position of a mobile
handheld device. Two of the LBS examples are finding a nearby ethnic restaurant and
comparing prices of a product from different stores. Though location-based services are
popular, most developers are not familiar with its design and implementation. This paper
studies the LBS structure by dividing an LBS system into five components: (i) mobile
handheld devices, (ii) positioning system, (iii) mobile and wireless networks, (iv) service
providers, and (vi) geographical data providers. Subjects related to LBS implementation
including (i) LBS system structure, (ii) handheld computing, (iii) Android application
development, and (iv) embedded database SQLite are detailed in this paper. The final
section gives a summary of this article and suggests future directions and possible
projects of location-based services.

1

1 Introduction

The number of smartphones shipped worldwide has passed the number of PCs and
servers shipped in 2011 and the gap between them is expected to keep bigger. The
emerging smartphones have created many kinds of applications that are not possible or
inconvenient for PCs and servers, even notebooks. One of the best-seller applications is
location-based services (LBS) according to the following market research:
x Fleishman Hillard (2012, February 6) reports 80% of smartphone owners have

location-based services and half of them use services that provide offers,
promotions, and sales based on their current locations.

x The most convenient mobile shopping experience is price comparison and product
research according to JiWire (2011, October 14).

x The number of location-based services users was increased from 12.3 million in
2009 to 33.2 million in 2010 (170% increase) in the US based on SNL Kagan
(Cohen, 2011, January 20).

Location-based services are popular, but the details of their design and implementation
are still not known for most people. This paper tries to relieve the problem by explaining
the LBS design and implementation from a developer perspective. It divides the LBS
system into five components: (i) mobile handheld devices, (ii) positioning system, (iii)
mobile and wireless networks, (iv) service providers, and (v) geographical data providers.
Subjects closely related to LBS including LBS architecture, handheld computing,
Android application development, and embedded database SQLite will be detailed in this
paper too.

The rest of this paper is organized as follows. Section 2 gives a generic LBS architecture
and an LBS example showing how an LBS works. Handheld computing including a
generic system structure of mobile handheld devices and client-side handheld computing
is introduced in Section 3. Android application development is explained via an example
in Section 4. The example includes several XML and Java files and the Eclipse IDE
(Integrated Development Environment) with Android plugin and Android DDMS (Dalvik
Debug Monitor Server) are introduced in this section too. An LBS requires the support
from geographical data providers, which are normally a third party and charge users for
their services. This study uses an embedded database SQLite for providing geographical
data to small LBS projects. Section 5 introduces the embeddable database SQLite. The
final section summarizes this study and gives possible LBS projects.

2 Location-Based Services (LBS)

This section introduces location-based services including a generic LBS architecture and
an LBS example.

2.1 An LBS Architecture

A location-based service is a service based on the geographical position of a mobile
handheld device (Kupper, 2005; Kolodziej & Hjelm, 2006). Two of the LBS examples

2

are (i) finding a nearby ethnic restaurants and (ii) locating a nearby store with the best
price of a product. A system structure of location-based services, shown in Figure 1,
includes five major components (Steiniger, Neun, & Edwardes, 2006):

(a) Mobile handheld devices, which are small computers that can be held in one hand.
For most cases, they are smartphones.

(b) Positioning system, which is a navigation satellite system that provides location
and time information to anyone with a receiver.

(c) Mobile and wireless networks, which relay the query and location information from
devices to service providers and send the results from the providers to devices.

(d) Service providers, which provide the location-based services.
(e) Geographical data providers, which are databases storing a huge amount of

geographical data such as information about restaurants and gas stations.

Figure 1: A System Structure of Generic Location-Based Services.

2.2 An LBS Example

An LBS example of finding route anomalies is given step by step as follows:

1. The smartphone (a) includes an application of finding route anomalies.
2. A mobile user submits a query of finding route anomalies along with the location

information from a positioning system (b) to the application program, which runs in
background.

3. The application program calls the server-side programs (d) located at the Aerospace
School of the University of North Dakota along with the location information via
mobile or wireless networks (c).

4. The programs at the servers perform the route anomaly detection using an Oracle
database (e) which stores route data. Appropriate actions such as sending an alert
are taken when an anomaly occurs.

5. The results such as an acknowledgement of sending an alert are sent back to the
smartphone.

A nice introduction of LBS technologies and standards is given by Wang, Min, & Yi
(2008, May 19-23).

3

3 Handheld Computing
Handheld computing is the use of handheld devices like smart cellular phones to perform
wireless, mobile, handheld operations such as browsing the mobile Web and finding the
nearest gas stations. It is an essential part of location-based services. This section
discusses two handheld computing subjects: mobile handheld devices and client-side
handheld computing.

3.1 Mobile Handheld Devices

Mobile users interact with mobile commerce applications by using small wireless
Internet-enabled devices, which come with several aliases such as handhelds, palms,
PDAs, pocket PCs, and smart phones. To avoid any ambiguity, a general term, mobile
handheld devices, is used in this article. Mobile handheld devices are small general-
purpose, programmable, battery-powered computers, but they are different from desktop
PCs or notebooks due to the following special features:
x limited network bandwidth,
x small screen/body size, and
x Mobility.

Figure 2: System Structure of Mobile Handheld Devices.

Short battery life and limited memory, processing power, and functionality are additional
features, but these problems are gradually being solved as the technologies improve and
new methods are constantly being introduced. The limited network bandwidth prevents
the display of most multimedia on a microbrowser. Though the Wi-Fi and 3G networks
go some way toward addressing this problem, the wireless bandwidth is always far below
the bandwidth of wired networks. The small screen/body size restricts most handheld
devices to using a stylus for input. Figure 2 shows a typical system structure for
handheld devices, which includes the following six major components (Hu, Wiggen, &
Yang, 2005):

1. Mobile operating systems: Simply adapting desktop operating systems for
handheld devices has proved to be futile. A mobile operating system needs a

Embedded
database

I/O bus

Batteries

Memory
bus

System
bus

I/O devices

Mobile CPU I/O bridge Memory

Mobile OS Microbrowser

Wireless adapter
 Data

Instructions

4

completely new architecture and different features to provide adequate services for
handheld devices. A generalized mobile operating system structure can be
visualized as a six-layer stack: (i) applications, (ii) GUI, (iii) API framework, (iv)
multimedia, communication infrastructure, and security, (v) computer kernel,
power management, and real-time kernel, and (vi) hardware controller.

2. Mobile central processing units: Handheld devices are becoming more
sophisticated and efficient every day and mobile users are demanding more
functionality from their devices. To achieve this advanced functionality, in
addition to the obvious feature, low cost, today’s mobile processors must have the
following features: (i) high performance, (ii) low power consumption, (iii)
multimedia capability, and (iv) real-time capability. The cores and architectures
designed by Cambridge-based ARM Holdings Ltd. have begun to dominate the
mobile CPU market.

3. Microbrowsers: Microbrowsers are miniaturized versions of desktop browsers such
as Netscape Navigator and Microsoft Internet Explorer. They provide graphical
user interfaces that allow mobile users to interact with mobile commerce
applications. Microbrowsers usually use one of the following four approaches to
return results to the mobile user: (i) wireless language direct access, (ii) HTML
direct access, (iii) HTML to wireless language conversion, and (iv) error.

4. Input/output components: Various I/O devices have been adopted by mobile
handheld devices. The only major output device is the screen, but there are several
popular input devices, among them: (i) keyboards and (ii) touch screens/writing
areas that need a stylus.Memory: Three types of memory are usually employed by
handheld devices: (i) RAM, (ii) ROM, and (iii) flash memory. Hard disks, which
provide much more storage capacity, are likely to be adopted by handheld devices
in the near future.

5. Batteries: At present, rechargeable Lithium Ion batteries are the most common
batteries used by handheld devices. However, the life of this kind of battery is
short and the technology will not significantly improve unless and until
manufacturers begin to switch to fuel cells, which may not happen for at least
several years.

Synchronization connects handheld devices to desktop computers, notebooks, or
peripherals to transfer or synchronize data. Without needing serial cables, many
handheld devices now use either an infrared (IR) port or Bluetooth technology to send
information to other devices.

3.2 Client-Side Handheld Computing

Client-side handheld computing is the programming for handheld devices and it does not
need the supports from server-side programs. Typical applications created by it include
(i) address books, (ii) video games, (iii) note pads, and (iv) to-do list. Various
environments/operating systems/languages are available for client-side handheld
programming. Table 1 lists the top-five mobile operating systems.

5

Mobile OS Android BlackBerry
OS iOS Symbian Windows Phone

Creator Open Handheld
Alliance RIM Apple Nokia Microsoft

2011 Market Share
(472.7 million) 1st (46.4%) 4th (12.1%) 2nd (18.9%) 3rd (18.7%) 6th (2.1%)

 (5th: Samsung's Bada)

Development
Languages Java Java Objective

C/C++
C++, Java,
others Visual C++

Kernel Type Linux Unix Hybrid Microkernel Windows CE 6/7

IDEs, Libraries,
Frameworks

Android SDK;
ADT plug-in for
Eclipse

BlackBerry
JDE iPhone SDK

Windows Phone SDK
(works with Visual
Studio)

Source Model Open Closed Closed (open
for the core) Closed Closed

Initial Release 2008 1999 2007 2001 2010

Latest Version as
of August 2011 3 7 4 Anna 7

Mobile Application
Store Android Market App World App Store Ovi Store Windows Marketplace

for Mobile

Table 1: Top-5 Mobile Operating Systems and Their Features.

They apply different approaches to accomplishing the development of mobile
applications. Figure 2 shows a generic development cycle applied by them. Handheld
emulators instead of the handhelds themselves are used for the development because of
the convenience reason.

Figure 2: A Generalized Client-Side Handheld Computing Development Cycle.

Checking

Results

Displayed

No
Yes

Program
synchronization

Handheld
developers

Handheld
applications

design &
implementation

Handheld
emulator

End
users

Handheld
device

 Good
enough?

Queries

6

4 Android Application Development

Android (N.D.) is a software stack for mobile devices such as smartphones and tablet
PCs. It was developed by the Open Handset Alliance, a consortium of 80 hardware,
software, and telecommunication companies led by Google devoted to advancing open
standards for mobile devices. Google purchased the initial developer of the software,
Android Inc., in 2005. Android includes an operating system, middleware, and key
applications. The Android SDK (Software Development Kit) provides the tools and APIs
necessary for developing applications on the Android platform using the Java
programming language. Google released most of the Android code under the Apache
License, a free software license. Android is tightly integrated with Google Maps, which
provides a powerful tool for location-based services. Figure 3 shows a screenshot of a
Google map with a location marker.

Figure 3: A Screenshot of a Google Map with a Location Marker.

4.1 A Simple Android Example

This application is based on the default template when you create an Android project. It
has two different screens and is able to move one screen to another screen. Figure 4
shows the result screenshots. Two activities/pages are included in this application:
x HelloWorldActivity.java, which is the startup page and
x NextPageActivity.java, which is the other page.

Other than the text, each of the pages contains a button, which is used to display the other
page. The following five components of this app will be detailed next:
x Android manifest file (AndroidManifest.xml),
x Layout XML code (main.xml and next.xml),
x Strings (strings.xml),
x The R file (R.java), and
x Java source code (HelloWorldActivity.java and

NextPageActivity.java).

http://people.aero.und.edu/~wenchen/course/515/week8/doc/main.txt
http://people.aero.und.edu/~wenchen/course/515/week8/doc/next.txt
http://people.aero.und.edu/~wenchen/course/515/week8/doc/strings.txt
http://people.aero.und.edu/~wenchen/course/515/week8/doc/R.txt
http://people.aero.und.edu/~wenchen/course/515/week8/doc/HelloWorldActivity.txt
http://people.aero.und.edu/~wenchen/course/515/week8/doc/NextPageActivity.txt

7

Next Page Î

Í Home Page

Figure 4: Two Screenshots of the Android Application.

4.2 Eclipse IDE with Android Plugin

Eclipse (N.D.) is a software development environment for multiple programming
languages including Ada, C, C++, COBOL, Java, Perl, PHP, Python, R, Ruby, etc. It
comprises an integrated development environment (IDE) and an extensible plug-in
system. Android Development Tools (ADT) is a plugin for the Eclipse IDE, which gives
developers an integrated environment for building Android applications. Figure 5 shows
a screenshot of the Eclipse IDE with Android plugin, which provides the functionality of
a well-established IDE, along with Android-specific features that are bundled with ADT.
It allows developers to perform various tasks such as (i) setting up Android projects, (ii)
creating an application user interface, (iii) adding components based on the Android
Framework API (Application Programming Interface), (iv) debugging applications using
the Android SDK (Software Development Kit) tools, and (v) exporting .apk files in
order to post your application.

Figure 5: A Screenshot of the Eclipse IDE with Android Plugin.

Menu Bar

Project
Navigator:
Project list

Editing
Area

Outline:
Structure of
the selected
file

Task List

Output Area:
Properties,
results, error
messages, …

Status Bar

Change
Perspective:
DDMS, Java,
debug, …

Standard
Toolbar

8

4.3 Android Manifest File

The main missions of the manifest file are to explain what the application consists of,
what its major building blocks are, what permissions it requires, etc. It must declare all
activities, services, broadcast receivers, and content provider of the application. For
example, if the application wants to access the Internet, it must define in this file that it
would like to use the related permission.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.HelloWorld"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-sdk android:minSdkVersion="8" />
 <application android:icon="@drawable/icon"
 android:label="@string/app_name">
 <activity android:name=".HelloWorldActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name=".NextPageActivity"
 android:label="Next Page" />
 </application>
</manifest>

4.4 Layout XML Code

The user interface for activities is defined via layouts. The layout defines the UI
elements, their properties and their arrangement. A layout can be defined via Java code
or via XML:

x Java code: You typically use Java code to generate the layout if you do not know
the content until runtime; e.g., if your layout depends on content which you read
from the Internet. An example of this is the next three statements whose screenshot
is shown in Figure 6:

 TextView tv = new TextView(this);
 tv.setText("Hello, Android");
 setContentView(tv);

which compose the string “Hello, Android” and display it.

http://developer.android.com/reference/android/widget/TextView.html
http://developer.android.com/reference/android/widget/TextView.html#setText%28java.lang.CharSequence%29
http://developer.android.com/reference/android/app/Activity.html#setContentView%28android.view.View%29

9

Figure 6: A Screenshot of a layout generated by Java code.

x XML: XML based layouts are defined via a resource file in the folder
/res/layout. This file specifies the view groups, views, their relationship, and
their attributes for a specific layout. Defining layouts via XML is usually the
preferred way as this separates the programming logic from the layout definition.
For example, the following two layouts are used in this application:

o home page at res/layout/main.xml and
o next page at res/layout/next.xml

The application loads the screen specified in main.xml by the following Java
command in the HelloWorldActivity.java:
 setContentView(R.layout.main);

The following code shows the contents of the file main.xml, one of the two screens of
this application:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:gravity="center"
 android:background="@android:color/white">
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:gravity="center"
 android:text="@string/hello"
 android:textSize="25sp"
 android:textStyle="bold"
 android:textColor="@android:color/black"
 />
 <Button android:id="@+id/next"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="15sp"
 android:text="@string/button"
 />
</LinearLayout>

http://people.aero.und.edu/~wenchen/course/515/week8/doc/next.txt
http://people.aero.und.edu/~wenchen/course/515/week8/doc/HelloWorldActivity.txt
http://developer.android.com/reference/android/app/Activity.html#setContentView%28android.view.View%29

10

4.5 Strings

It is an XML file containing all text, such as button names, labels, and default text, used
by the application. The purpose of using several XML files in an Android application is
each XML file having its specific tasks. For example, a layout XML file is for user
interface and a strings XML file is for their textual content. The code below shows the
file strings.xml used in this application:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="hello">Hello, World!\n</string>
 <string name="button">Next Page</string>
 <string name="app_name">Hello World</string>
</resources>

The attribute value @string/hello, where string is the resource type and hello is
the resource name, represents the string “Hello, World\n!,” where the symbol ‘\n’ is the
character newline, stored in the file:
 /res/values/strings.xml

You can use this syntax in an XML resource any place where a value is expected that you
provide in a resource.

4.6 The R File

The directory gen in an Android project contains generated values. R.java is a
generated class containing references to resources of the res folder in the project. These
resources can be values, menus, layouts, or icons/pictures/animations. It is an
automatically generated file so it should not be modified. The code below shows the file
R.java for this app:

/* AUTO-GENERATED FILE. DO NOT MODIFY.
 *
 * This class was automatically generated by the
 * aapt tool from the resource data it found. It
 * should not be modified by hand.
 */

package com.example.HelloWorld;

public final class R {
 public static final class attr {
 }
 public static final class drawable {
 public static final int icon=0x7f020000;
 }
 public static final class id {
 public static final int home=0x7f050001;
 public static final int next=0x7f050000;
 }

11

 public static final class layout {
 public static final int main=0x7f030000;
 public static final int next=0x7f030001;
 }
 public static final class string {
 public static final int app_name=0x7f040002;
 public static final int button=0x7f040001;
 public static final int hello=0x7f040000;
 }
}

The Android system provides methods to access the resources specified in the R file.
Assume that two string variables hello and app_name are defined in the file
res/values/strings.xml. They could be accessed anywhere in the Java code by
using the following syntax:
 [<package_name>.]R.<resource_type>.<resource_name>

An example of the string accesses is R.string.hello where string is the resource
type and hello is the resource name. The reference is “final static int” instead
of String. There are many Android APIs that can access your resources when you
provide a resource ID in this format. For example, the method
getString(R.string.hello) returns a string “Hello, World!\n” with the reference
ID R.string.hello.

4.7 Java Source Code

The Java code is what drives everything. It is this code that ultimately is converted to
Dalvik executable and runs the application. This application includes two
screens/activities/classes:

x HelloWorldActivity.java, which is the main page, and
x NextPageActivity.java, which is the other page.

These two screens are similar. Each of the screens displays text and a button. The button
is used to activate the other activity/class, which displays the other screen. Notice that
the class is based on the Activity class. An Activity is a single application entity
that is used to perform actions. The onCreate() method is called by the Android
system when your Activity starts—it is where you should perform all initialization and
UI setup. An activity is not required to have a user interface, but usually does. The code
below shows the file HelloWorldActivity.java:

package com.example.HelloWorld;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;

public class HelloWorldActivity extends Activity {

http://developer.android.com/reference/java/lang/String.html
http://developer.android.com/reference/android/content/Context.html#getString%28int%29
http://people.aero.und.edu/~wenchen/course/515/week8/doc/HelloWorldActivity.txt
http://people.aero.und.edu/~wenchen/course/515/week8/doc/NextPageActivity.txt
http://developer.android.com/reference/android/app/Activity.html#onCreate%28android.os.Bundle%29
http://people.aero.und.edu/~wenchen/course/515/week8/doc/HelloWorldActivity.txt

12

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 final Button button = (Button) findViewById(R.id.next);
 button.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 /** Here i calls a new screen. **/
 Intent i = new Intent(
 HelloWorldActivity.this, NextPageActivity.class);
 startActivity(i);
 }
 });
 }
}

4.8 DDMS (Dalvik Debug Monitor Server)

The ability of receiving locations is the fundamental requirement for all location-based
applications. Android allows its emulator to receive a location (including longitude and
latitude) from the DDMS (Dalvik Debug Monitor Server). The DDMS can be activated
from the standard toolbar of Eclipse or by selecting the following options of Eclipse:

a. Select the Window menu.
b. Select the Open Perspective option.
c. Select the DDMS option.
d. Fill in the longitude and latitude values and click the Send button:

Figure 7 shows an application receiving and displaying the location information sent
from the DDMS.

(a)

Î

Location
information
sent to the

app

(b)

Figure 7: (a) A Screenshot of the DDMS and (b) the Application Receiving and
Displaying the Location Information Sent from the DDMS.

13

5 Embedded Database SQLite

A location-based service does not require an embedded database in the handheld device.
A server-side geographical database provides the necessary information for LBS. For
example, GeoNames (N.D.) is a geographical database available and accessible through
various Web services. However, they also charge users for their services. An
embeddable database is a convenient tool for small LBS projects. This section discusses
the embedded database SQLite that comes with Android packages.

4.1 An SQLite Structure

SQLite (N.D.a) is an open source embeddable relational database management system,
which is embedded within an application process without the overhead associated with a
client-server configuration. Embedded databases are lightweight because they require
little memory during run time and are written in compact code. SQLite includes the
following major features: (i) supporting most of the SQL-92 standard, (ii) running on all
major operating systems, (iii) having support for the major computer languages, and (iv)
including multitasked read operations and sequential writes. The SQLite structure
(N.D.b) consists of four components: (i) SQL Compiler, (ii) Core, (iii) Backend, and (iv)
accessories as shown in Figure 8. It can store data up to 2 TB with each database saved
in a single disk using a B+ tree data structure. The SQL statements are compiled into
assembly code executed on the SQLite virtual machine, Virtual Database Engine
(VDBE).

Figure 8: SQLite Internal Structure.

4.2 SQLite in Android

SQLite database is bundled with Android SDK (Software Development Kit). When the
Android SDK is downloaded and installed, the SQLite database is ready to be used.
Since no extra database setup and administration are needed, developers only have to
define the SQL statements for defining and managing the database. SQLite supports

Interface

SQL
Command
Processor

Virtual
Machine

B-Tree OS

Interface

Pager

Code
Generator

Parser

Tokenizer

Test Code

Utilities

Core Backend

Accessories SQL Compiler

14

standard relational database features like SQL syntax, transactions, and prepared
statements and the following data types: (i) NULL, a NULL value, (ii) INTEGER, a signed
integer, (iii) REAL, a floating point value, (iv) TEXT, a text string, and (v) BLOB, a binary
large object. Compared to server-side databases, SQLite requires only little memory at
runtime (about 250 KB). SQLite database is private to the Android application which
creates it. In order to share data with other applications, the applications can use Content
Provider, which manages access to a structured set of data. Content providers are the
standard interface that connects data in one process with code running in another process.
To query a content provider, a query string uses the following URI syntax:

 <standard_prefix>://<authority>/<data_path>/<id>

For example, to retrieve all the personal information stored by the AddressBook
application, the URI would look like this:

 content://AddressBook/people

6 Summary

Mobile application stores (or app stores) sell or provide mobile applications/services for
handheld devices such as smartphones. The applications/services are not necessarily
from the storeowners. Many of them are from the third parties such as independent
developers. A wide variety of mobile applications is available on the stores. Popular
applications include:

x Mobile games, which include standalone and online games,
x Mobile offices, which include software like spreadsheets, editors, and notebooks,
x Mobile shopping, which uses mobile handheld devices to purchase products, and
x Music, which may be the most frequently downloaded applications.

One of the best-selling apps is related to location-based services, which cover a wide
range of usages such as finding the lowest-price product in a nearby store and locating
the nearest gas stations. Location-based services implementation involves a variety of
technologies and methods and most developers are not familiar with them. This paper
explains the design and implementation of location-based services by detailing the
following subjects: (i) LBS system, (ii) handheld computing, (iii) Android application
development, and (iv) embeddable database SQLite. Readers may apply the knowledge
learned from this article to the following applications:

x Find the interesting nearby places such as ethnic restaurants and movie theaters.
x Compare prices and perform product research.
x Advertisements and coupons are displayed based on users’ locations.
x Use social networks to connect people within a short distance.

The following location-based research can also be considered:
x Detect any route anomalies. For example, an alert is generated if a pupil does not

follow his/her regular route to school.
x Find travel recommendations based on route trajectories. For example, most

people probably never heard the world’s largest truck stop at Walcott, Iowa. With

15

this feature, the drivers on the highway I-80 will be notified this interesting place
when they are near Walcott.

x Indoor positioning and navigation are used to help users have a better visiting
experience.

x Pre-fetch and cache map tiles based on drivers’ current locations so maps can be
displayed in time and power consumption is reduced.

References

Android. (N.D.). Android Developers. Retrieved March 6, 2012, from

http://developer.android.com/
Cohen, Heidi. (2011, January 20). Mobile Marketing: 56 Must Have Facts. Retrieved

December 9, 2011, from http://heidicohen.com/mobile-marketing-must-have-facts/
Eclipse. (N.D.) About the Eclipse Foundation. Retrieved March 12, 2012, from

http://www.eclipse.org/org/
Fleishman Hillard. (2012, February 6). 2012 Digital Influence Study. Retrieved from

March 5, 2012, from http://www.factbrowser.com/facts/4671/
Frantzell, N.-E. (2005, July 21). An Introduction to SQLite, an Open Source Embeddable

Database. Retrieved November 11, 2011, from
http://www.ibm.com/developerworks/opensource/library/os-sqlite/

GeoNames. (N.D.). About GeoNames. Retrieved February 17, 2012, from
http://www.geonames.org/about.html

Hu, W.-C., Wiggen, T., & Yang, H.-J. (2005, May 15-18). Mobile commerce systems
and payment methods. In Proceedings of the 2005 Information Resources
Management Association (IRMA 2005) International Conference, pages 769-771,
San Diego.

JiWire. (2011, October 14). JiWire Mobile Audience Insights Report Q2 2011. Retrieved
from February 18, 2012, from http://www.factbrowser.com/facts/3196/

Kolodziej, K. & Hjelm, J. (2006). Local Positioning Systems: LBS Applications and
Services, CRC Taylor & Francis.

Kupper, A. (2005). Location-Based Services: Fundamentals and Operation. Wiley.
SQLite. (N.D.a). About SQLite. Retrieved from March 5, 2012, from

http://www.sqlite.org/about.html
SQLite. (N.D.b). The Architecture of SQLite. Retrieved January 12, 2012, from

http://www.sqlite.org/arch.html
Steiniger, S., Neun, M., & Edwardes, A. (2006). Foundations of Location-Based

Services. Retrieved January 13, 2012, from
http://www.geo.unizh.ch/publications/cartouche/lbs_lecturenotes_steinigeretal2006.p
df

Wang, S., Min, J., & Yi, B. K. (2008, May 19-23). Location based services for mobiles:
technologies and standards. In Proceedings of the IEEE International Conference on
Communication (ICC), Beijing, China.

